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1. INTRODUCTION

This paper gives closed-form expressions for certain integrals that appear in the numerical
solution of Cauchy-singular integral equations by collocation methods. This class of integral
equations is frequently associated with problems of potential theory involving finite strip
boundaries [1, 2, 3]. Applications may be found, for example, in airfoil theory, elasticity, and
hydrodynamics [2]. The formulas we derive effectively eliminate the numerical instabilities
associated with standard recursion formulas.

The integrals considered are of the form
∫ 1
−1w(x) pn(x) dx/(x− z), wherepn denotes a

Jacobi or Chebyshev polynomial,w a weighting function, andza complex field coordinate.
Typically, boundary values on the strip (−1, 1) are expressed as series inpn. The integrals
then express the field induced at a pointz by the boundary values. When there are multiple
boundary strips, the integrals also represent mutual induction between boundaries; in that
case, they must be considered during the boundary-value solution process.

A prototype system of boundary integral equations for a two-strip problem, for example,
is

P.V.
∫ b1

a1

f1(x1)

x − x1
dx1+

∫ b2

a2

f2(x2)

x − x2
dx2 = g1(x), a1 < x < b1 (1a)
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∫ b1

a1

f1(x1)

x − x1
dx1+ P.V.

∫ b2

a2

f2(x2)

x − x2
dx2 = g2(x), a2 < x < b2, (1b)

where f1, f2 are unknown boundary values on the strips (a1, b1) and (a2, b2) lying on the
x-axis, andg1, g2 are given functions, typically up-wash velocities in thin-airfoil theory. In
a collocation scheme, the principal-value integrals are conveniently handled by expressing
the unknown potentials in terms of Jacobi or Chebyshev polynomials, for example,

f (x1) =
√

1+ x1

1− x1

∑
n

an P(
− 1

2 ,
1
2)

n (x1), (2)

where the range ofx1 is normalized to (−1, 1), and theP(−1/2,1/2)
n are Jacobi polynomi-

als. The square-root factor in this case allows an integrable trailing-edge singularity, in
thin-airfoil theory parlance. TheP(−1/2,1/2)

n are orthogonal on(−1, 1) with respect to the
square-root factor, and thus form a basis for a collocation scheme. Behavior of the surface
values at the endpoints−1, 1 is related to theindexof the solution in the theory of singular
integral equations [1, 3]. In applications, its choice is dictated by physical considerations.
The correct polynomial expansion follows from this choice. For example, a solution that is
integrably singular at−1 and zero at+1 would involve the factor

√
(1− x)/(1+ x) and

the polynomialsP(1/2,−1/2)
n .

The theory of such boundary collocation schemes is covered in [1]. In this note, we are
concerned with the generation of field values, given the collocation coefficients. Thus the
computation of fluid velocity from a surface vorticity distribution, for example, involves
integrals of the form

∫ 1

−1

√
1+ x

1− x

P(
− 1

2 ,
1
2)

n (x)

x − z
dx

for a vorticity representation of the form (2). The field pointz (complex) may lie anywhere
except on the strip (−1, 1). It is seen that the non-singular mutual-induction integrals
appearing in the boundary integral equations (1a), (1b) are also of this form.

We present closed-form expressions for induction integrals involvingP(1/2,−1/2)
n ,

P(−1/2,1/2)
n (Jacobi polynomials), and as a by-product,Un, Tn (Chebyshev polynomials).

NOTATION AND RECURSION FORMULAS

We work with the normalized Jacobi polynomials or “airfoil polynomials” [1]

un(x) = n!

0(n+ 1/2)
P(

1
2 ,− 1

2)
n (x), vn(x) = n!

0(n+ 1/2)
P(
− 1

2 ,
1
2)

n (x) (3)

which satisfy the orthonormality relations∫ 1

−1

√
1− x

1+ x
un(x) um(x) dx = δmn,

∫ 1

−1

√
1+ x

1− x
vn(x)vm(x) dx = δmn (4)

and the recursion relations

un+1 = 2xun − un−1, vn+1 = 2xvn − vn−1. (5)
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The induction integrals are defined as

In(z) =
∫ 1

−1

√
1− x

1+ x

un(x)

x − z
dx, Kn(z) =

∫ 1

−1

√
1+ x

1− x

vn(x)

x − z
dx. (6)

From the expressions

u0 = v0 = 1√
π
, u1 = 1√

π
(2x + 1), v1 = 1√

π
(2x − 1)

and the recursion relations (5), it is easy to derive the following recursion formulas for the
integrals:

I0(z) =
√
π − i

√
π

√
1− z

1+ z
, I1(z) = 2

√
π + (2z+ 1)I0(z) (7a)

In+1(z) = 2z In(z)− In−1(z) (7b)

and similarly forKn(z). In (7a), the branch of the square root is such that its result lies in
the upper half-plane.

CLOSED-FORM EXPRESSIONS

The recursion scheme (7) is seriously corrupted by numerical noise forn> 12 or so and
|z|> 2 (Fig. 1). We now show that it is possible to derive closed-form expressions forIn(z)
andKn(z) that are free of such problems.

For In(z), we consider the Chebyshev polynomialsUn(x) of the second kind [4] and the
associated integrals

În(z) =
∫ 1

−1

√
1− x2

Un(x)

x − z
dx. (8)

Using known relationships [4] between theUn(x) and theP(1/2,−1/2)
n , we can derive

un(x) = 1√
π

U2n

(√
1+ x

2

)
.

Substituting into (6) and making use of the fact thatU2n(x) is even, we find that

In(z) =
√

1

2π(1+ z)

[
Î2n

(√
1+ z

2

)
− Î2n

(
−
√

1+ z

2

)]
. (9)

In order to evaluatêIn, we make use of the following representation ofUn(x) [4],

Un(x) = 1

2π i

∮
C

s−n−1 ds

1− 2xs+ s2
, (10)

where the pathC must enclose the origin but exclude the zeros of(1− 2xs+ s2). Since
−1< x< 1 in our case, these zeros lie on the unit circle. Thus any circuit enclosing the
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FIG. 1. Recursion (dashed lines) vs closed-form (solid lines) calculations for the integral Re[Kn(z)], for
z= 0+ iy andn= 10, 12, 15.

origin and lying wholly inside the unit circle is admissible. We will presently impose one
more restriction onC.

Inserting (10) into (8) and interchanging the order of integration, we obtain

În(z) = 1

2π i

∮
C

Î0(z)+ πs

1− 2zs+ s2

ds

sn+1
, (11a)

where

Î0(z) = −πz− iπ(1+ z)

√
1− z

1+ z
(11b)

and the branch of the square root is such that its result lies in the upper half-plane.
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Let z1,2 denote the zeros of(1− 2zs+ s2). It is impossible for either zero to lie at the
origin. Thus the contourC can be made small enough that bothz1,2 lie outside it. In that
case the only singularity of the integrand in (11a) is the one at the origin due to 1/sn+1.
Furthermore, the expansion

1

1− 2zs+ s2
= 1

z1z2

∞∑
p=0

∞∑
q=0

(
s

z1

)p( s

z2

)q

(12)

is permissible. Using (12) and the relationsz1z2 = 1, z1 + z2 = 2z, we can compute the
residue. Working through the algebra, we arrive at

În(z) = Î0(z)

[Î0(z)/π + 2z]n
. (13)

Expressions (9), (11b), and (13) combine to give a closed-form expression forIn(z). Note
that (13) gives an expression for the induction integral (8), involving Chebyshev polynomials
of the second kind.

A similar development leads to an expression forKn(z), which involves the normalized
Jacobi polynomialsvn. Using relationships given in [4], we can write

vn(x) =
√

2/π

1+ x
T2n+1

(√
1+ x

2

)
,

whereTn denotes a Chebyshev polynomial of the first kind. Define the associated integrals

K̂n(z) =
∫ 1

−1

1√
1− x2

Tn(x)

x − z
dx. (14)

Substituting the above expression forvn into the definition (6) ofKn(z), and using the fact
thatT2n+1 is an odd function, we find that

Kn(z) = 1

2
√
π

[
K̂2n+1

(√
1+ z

2

)
+ K̂2n+1

(
−
√

1+ z

2

)]
. (15)

Next, we use the contour integral representation [4] forTn,

Tn(x) = 1

4π i

∮
C

s−n−1(1− s2)

1− 2xs+ s2
ds, (16)

whereC must enclose the origin and exclude both zeros of the denominator, which lie on
the unit circle. Proceeding as we did forIn(z), we obtain

K̂n(z) = 1

4π i

∮
C

(1− s2)K̂0(z)+ 2πs

1− 2zs+ s2

ds

sn+1
, (17)

where

K̂0(z) = iπ

2

[√
1+ z

1− z
−
√

1− z

1+ z

]
(18)
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and the range of the square root function is restricted to the upper half-plane. RestrictingC
as before and using the expansion (12) to calculate the residue of (17), we arrive at

K̂n(z) = K̂0(z)

2[z− π/K̂0(z)]n
+ 2πz+ (2z2− 1)K̂0(z)

2[z− π/K̂0(z)]n−2
. (19)

Equations (19), (18), and (15) constitute the result forKn(z), while (19) and (18) give us
the value of the Chebyshev induction integral (14).

NUMERICAL COMPARISONS

Figure 1 gives a comparison between the recursion formula (7) and the closed-form
expressions given above. It is seen that the recursion formula rapidly loses stability for
moderate values ofz, while the closed-form expressions remain robust. The instability
of the recursion formula is greater for higher-order polynomials. For large|z|, both In(z)
andKn(z) have asymptotic expansions in inverse powers ofz; these are easily derived by
expanding the 1

x−z factor in (6) in powers ofx, which may then be expressed in terms of
un or vn as appropriate. It is found that the closed form expressions remain robust in the
asymptotic regime as well, roughly|z|> 3. Thus the formulas are suitable for use over the
entire range ofn andz, providedz does not lie on the real-axis segment (−1, 1).

“Higher-order” induction integrals, involving powers 1/(x − z)m, are easily obtained
by repeated differentiation of the formulas obtained here. We note also the comments of
a reviewer, who pointed out that some of these formulas may be derived in a relatively
straightforward manner from results given in [5].
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